

Synthesis and crystal structure of the potassium ytterbium complex with triethylenetetraaminehexaacetic acid: [K₃Yb(TTHA)(H₂O)₅]

Rui-Yao Wang,^a Jun-Ran Li,^a Tian-Zhu Jin,^a* Guang-Xian Xu,^a Zhong-Yuan Zhou^b and Xiang-Ge Zhou^b

^aState Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871, P. R. China; ^bChengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, P.R. China

(Received 12 August 1996; accepted 21 October 1996)

Abstract—The title complex $[K_3Yb(TTHA)(H_2O)_5]$, where $TTHA^{6-}$ is triethylenetetraaminehexaacetic acid anion was synthesized in aqueous solution, and its crystal structure was determined by X-ray diffraction. In the complex, the ytterbium ion is coordinated by four nitrogen atoms and five carboxyl oxygen atoms of the same $TTHA^{6-}$ anion. The coordination number of the ytterbium ion is 9, and its coordination polyhedron can be described as a distorted monocapped square antiprism. Each Yb(TTHA)³⁻ is further connected by K⁺ ions through carboxyl groups of TTHA⁶⁻ ion to form a three dimensional network structure. © 1997 Elsevier Science Ltd. All rights reserved.

Keywords: ytterbium complex; crystal structure; triethylenetetraaminehexaacetic acid.

Paramagnetic metal ion complexes are finding many applications in biomedicine, especially as bioconjugates for monoclonal antibody radioisotope labeling and as magnetic resonance imaging (MRI) agents [1,2]. Polyaminecarboxylic acids and their derivatives are very important chelating agents for metal ions, and diethylenetriaminepentaacetic acid (H₅DTPA) complex with gadolinium has been used as MRI agent in the NMR diagnosing of tumors [3,4]. Having similar coordination ability with H₅DTPA toward lanthanide ions, triethylenetetraaminehexaacetic acid (H₆TTHA) can also strongly chelate with lanthanide, and its complex with gadolinium may also be used as an image enhancing agent. Studies on lanthanide complex with H₆TTHA in solution have been carried out to determine the thermodynamic stability constants [5,6]. But crystallographic data on these complexes in the solid state has appeared only in one paper recently [7]. In this paper, we report the synthesis of

the r

an ytterbium complex with H_6TTHA and its crystal structure as determined by X-ray analysis.

EXPERIMENTAL

Preparation

Ytterbium $oxide(Yb_2O_3)$ and triethylenetetraaminehexaacetic acid(H₆TTHA) were mixed in 1:2 molar ratio in water. The mixed solution was refluxed for about 5 h with stirring. Then the solution was neutralized with KOH solution to about pH 6 and filtered. The filtrate was concentrated on a water bath, and the clear solution obtained was allowed to evaporate slowly at room temperature, yielding colorless crystals suitable for X-ray diffraction. The composition of the complex was deduced from the elemental analysis. Found: C, 25.1; H, 3.5; N, 6.1. Calc. for K₃Yb(TTHA)(H₂O)₅: C, 24.9; H, 3.9; N, 6.5%. This formula is approximately consistent with the result of diffraction analysis.

^{*}Author to whom correspondence should be addressed.

Empirical formula	$K_{3}Yb(C_{18}H_{24}N_{4}O_{12}) \cdot 5H_{2}O$	
Color	Colorless	
Crystal size (mm)	$0.26 \times 0.28 \times 0.34$	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
<i>a</i> (Å)	10.218(2)	
b (Å)	12.489(1)	
c (Å)	22.818(2)	
β(°)	91.30(1)	
$V(Å^3)$	2911.1(7)	
Z	4	
Μ	868.83	
$D_{\rm c}({\rm g~cm^3})$	1.982	
Absorption coefficient (mm ⁻¹)	3.724	
F(000)	1732	
$\hat{\lambda}$ (Å) (Mo- K_x)	0.71073	
Monochromator	Graphite	
Scan type	$2\theta - \theta$	
2θ range (°)	3.0-50.0	
Scan speed (deg. min.)	6.00	
Standard reflections	3/97	
Index ranges h; k; l	-1-12; -1-14; -27-27	
Reflections collected	6640	
Independent reflections	$5118(R_{\rm int} = 6.39\%)$	
Observed reflections	4556 $(F > 4.0\sigma(F))$	
Absorption correction	N/A	
Quantity minimized	$\Sigma\omega(F_0-F_c)^2$	
Hydrogen atoms	Riding model, fixed isotropic U	
Weighting scheme	$w^{-1} = \sigma^2(F) + 0.0008F^2$	
Number of parameters refined	388	
Final R	0.0344	
Final Rw	0.0494	
Goodness-of-fit	1.67	
Max., min. residual ρ (e Å ³)	0.91, -0.86	

Table 1. Crystal data, details of data collection and refinement

Fig. 2. Coordination polyhedron of [K₃Yb(TTHA)(H₂O)₅].

IR spectra

IR spectra of the complex and free ligand were obtained from KBr pellet at 298 K using a Nicolet Magna-IR 750 spectrophotometer. Compared with the IR spectrum of free ligand, the $v_{as}(COO)$ band of complex is shifted 38 cm⁻¹ to lower wavenumbers from 1642 cm⁻¹, the $v_s(COO)$ band of complex is

shifted 4 cm⁻¹ to higher wavenumbers from 1398 cm⁻¹. This shows that the carboxyl group of the ligand has been coordinated with metal ions [8,9]. A broad absorption band for v(OH) appears at 3400 cm⁻¹ after complexation, showing the presence of water molecules in the complex.

Crystal structure determination

A colorless crystal of the ytterbium compound with dimension $0.26 \times 0.28 \times 0.34$ mm was mounted in a thin-walled capillary for structure determination. The reflection data were collected in the range $3.0-50.0^{\circ}$ on a Siemens P4. 5188 independent reflections were collected, of which 4556 with $F > 4.0\sigma(F)$ were used for structure refinement. Intensities were not corrected for absorption. All calculations were performed using the Siemens SHELXTL P4/PC system. The structure was determined by direct methods and difference-Fourier synthesis, and then refined by full-matrix least-squares to the final R and Rw of 0.0344 and 0.0494, respectively. Crystal data, details of data collection and refinement are listed in Table 1.

RESULTS AND DISCUSSION

The crystal structure of the $[K_3Yb(TTHA)(H_2O)_5]$ complex and its coordination polyhedron are shown

in Figs 1 and 2, respectively. Selected bond lengths and bond angles, are listed in Table 2.

In the complex, each Yb^{3+} ion is coordinated by four nitrogen atoms and five oxygen atoms from the five carboxyl groups of the same $TTHA^{6-}$ ion with coordination number nine, taking a monocapped square antiprism arrangement. The average bond lengths of Yb—N and Yb—O are 2.655 and 2.311 Å, respectively.

Each Yb(TTHA)³⁻ is further connected with K^+ ions through carboxyl groups of TTHA⁶⁻ ion serving as carboxyl bridges and oxygen bridges to form a three dimensional network structure (Fig. 3).

Recently, we reported the results [7] of crystallographic studies of lanthanum complex with triethylenetetraaminehexaacetic acid. Although both ytterbium and lanthanum complexes were obtained under the same conditions, they vary in composition and structure. In the latter K[KLa(HTTHA) (H_2O)] \cdot 8H₂O complex, a proton of the triethylenetetraaminehexaacetic acid is not ionized; the

2.342(4)	Yb(1)-O(5)	2.279(4)
2.264(4)	Yb(1)-O(9)	2.304(4)
2.365(4)	Yb(1)N(1)	2.644(4)
2.721(5)	Yb(1)—N(3)	2.686(5)
2.568(4)	K(1) - O(2A)	2.738(5)
2.633(5)	K(1)O(8)	2.601(5)
2.737(6)	K(1) - O(2w)	2.833(5)
2.893(5)	K(2)-O(1)	2.843(4)
2.840(4)	K(2)-O(9)	2.847(4)
2.780(5)	K(2) - O(3w)	2.878(5)
2.783(6)	K(2)—O(2)	2.835(4)
2.871(4)	K(3)—O(4A)	2.760(5)
2.732(5)	K(3)—O(12D)	2.861(4)
2.789(5)	K(3)— $O(5w)$	2.778(7)
5) 127.1(1)	O(1)—Yb(1)—O(7)	75.4(1)
9) 72.8(1)	O(1)—Yb(1)—O(11)	73.9(1)
64.7(1)	O(1) - Yb(1) - N(2)	124.1(1)
3) 134.9(1)	O(1) - Yb(1) - N(4)	123.6(1)
7) 136.4(1)	O(5)-Yb(1)-O(9)	142.4(1)
1) 73.0(1)	O(5) - Yb(1) - N(1)	77.9(1)
2) 65.2(1)	O(5) - Yb(1) - N(3)	97.6(2)
4) 75.3(1)	O(7) - Yb(1) - O(9)	75.0(1)
1) 147.5(2)	O(7) - Yb(1) - N(1)	82.4(1)
2) 71.3(1)	O(7) - Yb(1) - N(3)	66.7(1)
4) 127.2(1)	O(9)—Yb(1)—O(11)	85.8(1)
1) 135.6(1)	O(9) - Yb(1) - N(2)	135.1(1)
3) 74.3(1)	O(9) - Yb(1) - N(4)	67.6(1)
(1) 94.1(1)	O(11)Yb(1)-N(2)	136.9(1)
(3) 132.9(1)	O(11) - Yb(1) - N(4)	64.8(1)
2) 67.4(1)	N(1) - Yb(1) - N(3)	129.8(1)
1) 149 7(1)	N(2) - Yb(1) - N(3)	65.6(1)
•) •••••(•)		****(-)
	$\begin{array}{c} 2.342(4)\\ 2.264(4)\\ 2.365(4)\\ 2.721(5)\\ 2.568(4)\\ 2.633(5)\\ 2.737(6)\\ 2.893(5)\\ 2.893(5)\\ 2.840(4)\\ 2.780(5)\\ 2.780(5)\\ 2.780(5)\\ 2.783(6)\\ 2.871(4)\\ 2.732(5)\\ 2.789(5)\\ \end{array}$	2.342(4) Yb(1)-O(5) 2.264(4) Yb(1)-O(9) 2.365(4) Yb(1)-N(1) 2.721(5) Yb(1)-N(3) 2.568(4) K(1)-O(2A) 2.633(5) K(1)-O(2A) 2.633(5) K(1)-O(2W) 2.893(5) K(2)-O(1) 2.893(5) K(2)-O(2) 2.780(5) K(2)-O(2) 2.871(4) K(3)-O(4A) 2.732(5) K(3)-O(12D) 2.789(5) K(3)-O(5w) (a) O(1)-Yb(1)-O(7) (b) 127.1(1) O(1)-Yb(1)-O(7) (c) 7.732(5) K(3)-O(5w) (c) 127.1(1) O(1)-Yb(1)-O(7) (c) 7.732(5) K(3)-O(5w) (c) 127.1(1) O(1)-Yb(1)-N(2) (c) 136.4(1) O(5)-Yb(1)-N(1) (c) 7.30(1) O(5)-Yb(1)-N(1) (c) 65.2(1) O(5)-Yb(1)-N(1) (c) 71.3(1) O(7)-Yb(1)-N(3) (c) 71.3(1) O(7)-Yb(1)-N(1) (c) 71.3(1) O(9)-Yb(1)-N(1) (c) 71.3(1)

Table 2. Selected bond lengths (Å) and angles (°)

Symmetry operation: A = 1 - x, 1 - y, -z; B = x, 1 + y, z; C = -x, 1 - y, -z; D = -x, -y, -z.

Fig. 3. Arrangement of [K₃Yb(TTHA)(H₂O)₅] in unit cell.

coordination number of La^{3+} ion is ten, forming a bicapped square antiprism, and the crystal is composed of one dimensional chain.

Acknowledgement-This work was supported by Climbing

Program, a National Key Project for Fundamental Research.

REFERENCES

- 1. R. B. Lauffer, Chem. Rev. 1987, 87, 901.
- M. F. Tweedle, Lanthanide Probes in Life, Chemical and Earth Science (Edited by J.-C. G. Bunzli and G. R. Choppin) Ch. 1 and 5. Elsevier, Amsterdam (1989).
- 3. C. Paul-Roth and K. N. Raymond, *Inorg. Chem.* 1995, **34**, 1408.
- 4. V. Alexander, Chem. Rev. 1995, 95, 273.
- 5. A. E. Martell and R. M. Smith, *Critical Stability Constants*, 1, p. 286. Plenum Press, New York (1974).
- 6. L. Harju, Anal. Chim. Acta 1970, 50, 475.
- R.-Y. Wang, J.-R. Li, T.-Z. Jin and G.-X. Xu, Polyhedron 1997, 16, 1361.
- 8. R. E. Sievers and J. C. Bailar, *Inorg. Chem.* 1962, 1, 174.
- 9. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 4th edn, p. 231. John Wiley & Sons Inc., New York (1986).